Skip to menu Skip to content Skip to footer
News

How the brain’s recycling system breaks down in Parkinson’s Disease

24 February 2023
a woman with short grey hair looks to the left on a black background, a white superimposed drawing of a brain is on her head
Image: Adobe

Researchers from the University of Queensland have identified that a gene associated with an increased risk of Parkinson’s Disease also contributes to a build-up of cell debris in the brain.

Dr Adekunle Bademosi from The Queensland Brain Institute said the discovery could change the focus of Parkinson’s Disease treatment.

“Our team has found that a Parkinson’s Disease-linked mutation in a gene called Endophilin A1 blocks the process by which the body and the brain recycle cell waste,” Dr Bademosi said.

Without the process, called autophagy, toxic debris builds up and neurons die – known hallmarks of Parkinson’s Disease.

“We knew we could induce autophagy in cells by starving them of amino acids and the subsequent breakdown of debris tells a protein called EndoA to approach the cell membrane and begin the recycling process,” Dr Bademosi said.

“Now we’ve also seen that regular signals between neurons in the brain starts EndoA-induced autophagy when the electric impulses trigger the release of proteins or neurotransmitters at synapses.

“Unfortunately, when the Endophilin A1 gene is affected in Parkinson’s, the protein EndoA becomes insensitive to this trigger at the synapse and the debris that should be thrown out for recycling builds up instead.”

Decorative
Current Parkinson’s treatments tend to focus on clearing out the build-ups and replacing what is lost when too many neurons die.

“It may be time to shift the treatment focus to autophagy as the mechanism underlying these disease hallmarks,” Dr Bademosi said.

“Exploring the use of compounds that induce or inhibit autophagy could pave the way for new, more effective Parkinson’s drugs.”

UQ acknowledges the collaborative efforts of researchers in Professor Patrik Verstreken’s lab at the Flanders Institute of Biotechnology (VIB) in Belgium.

This study was published in Neuron.

Image above left: Dr Adekunle Bademosi.

Media: QBI Communications, communications@qbi.uq.edu.au, Elaine Pye +61 415 222 606, Merrett Pye +61 422 096 049.

Related articles

A man in a lab coat and protective goggles standing in front of a microscope

New ultrasound imaging to map drug delivery into the brain

A new device combining ultrasound and advanced imaging to provide crucial information for the safe delivery of drugs into the brain has been developed by University of Queensland researchers.
14 July 2025
Four cyclists gliding along in the sunrise at the Trapiche in Pelotas, Brazil.

Staying physically active cuts risk of early death by 40 per cent

Adults who stay consistently active throughout their life can lower their risk of early death by up to 40 per cent, a global study led by UQ has found.
11 July 2025

Media contact

Subscribe to UQ News

Get the latest from our newsroom.