Skip to menu Skip to content Skip to footer
News

Changing climate may affect animal-to-human disease transfer

1 May 2019
Decorative

Climate change could affect occurrences of diseases like bird-flu and Ebola, with environmental factors playing a larger role than previously understood in animal-to-human disease transfer.

Researchers from The University of Queensland and Swansea University have been looking at how different environments provide opportunities for animal-to-human diseases – known as zoonotic diseases – to interact with and infect new host species, including humans.

Dr Nicholas Clark, from UQ’s School of Veterinary Science, said this was a new line of thinking in this area, changing how we understand, and tackle, emerging zoonotic diseases.

“These diseases are caused by pathogens – for example, viruses, bacteria or parasitic worms – that cross from animals to humans, including notorious infections like bird flu, rabies virus and Ebola,” he said.

“In the past, we’ve primarily looked at how many different types of animal species a pathogen infects – widely considered an indicator of its risk to shift between host species.

“This is just one factor, and we’ve found that how infected animals are related is also important.

“But importantly, our research also shows that different environments provide new opportunities for pathogens to interact with and infect new host species.”

Dr Konstans Wells, from Swansea University, led the team’s review of a growing number of research studies, demonstrating that this ‘host shifting’, where a pathogen moves between animal species, is linked to the environment.

“Now that we know that environmental conditions are key, the question is: how can we develop models to predict disease moving between species in times of global environmental change?” he said.

Image removed.“As a recent study that we published in Ecology Letters found, climate change may constrain or facilitate the spread of diseases like avian malaria, and this is just one example.

“We need to find out more information about how climate alters animal-to-human shifts, and this might help us build a new modelling framework, which could help us forecast disease spread.”

According to Dr Wells, computational tools to tackle this global challenge are available, but are mostly being developed in other fields of study.

"Mathematical tools developed in the study of sensor networks, image processing and pattern recognition, and computational physics can help us predict when and where pathogens will be exposed to animals,” he said.

“Adapting these techniques in human and wildlife health research will be important if we’re to predict future emerging infectious disease epidemics or pandemics.

“Many factors are driving the spread of infectious diseases, making it challenging to predict when and where they’ll emerge next.

“However, by feeding our growing understanding of disease patterns into models, there’s hope we’ll be able to better forecast disease threads in the future, helping prepare for the next outbreak before it even arrives.”

The research has been published in Trends in Parasitology (DOI: 10.1016/j.pt.2019.04.001).

Media: Dr Nicholas Clark, n.clark@uq.edu.au, +61 432 420 979; Dr Konstans Wells, k.l.wells@swansea.ac.uk, +44 1 792 518 633; Dominic Jarvis, dominic.jarvis@uq.edu.au, +61 413 334 924.

Related articles

a scuba diver taking a photo of bleached coral underwater
Feature

Thousands of Queensland reef photos lead to worldwide change

UQ is celebrating the longest and most comprehensive reef photography monitoring project in the world.
15 July 2025
A young man stands in graduation cap and gown outside UQ's Forgan Smith building.

From war-torn Liberia to the UQ Law School: a graduate’s inspiring family legacy

When Alfred Brownell graduated from the UQ Law School this week he fulfilled a long-standing family legacy that began in West Africa more than 100 years ago.
15 July 2025

Media contact

Subscribe to UQ News

Get the latest from our newsroom.