Skip to menu Skip to content Skip to footer
News

Finding Nemo’s cousins

12 November 2019
A anemonefish in an anemone.

The fish made famous in Finding Nemo can see ultraviolet (UV) light and may use it as a ‘secret channel’ to find both friends and food, according to researchers.

Anemonefish are easily recognised by their striking orange and white patterning, but University of Queensland scientists set out to find out how ‘clownfish’ see their world and how that influences their behaviour.

Researchers at UQ’s Queensland Brain Institute (QBI) and the University of Maryland in the United States analysed the visual systems of a particular species of anemonefish, Amphiprion akindynos.

QBI researcher Dr Fabio Cortesi said the Great Barrier Reef anemonefish was basically Nemo’s cousin.

“We looked at everything starting with the genes they use to see and what proteins they express, and in combination with anatomical data, predicted what these anemonefish can see,” he said.

“Proteins involved in detecting light have minute, well-known differences that influence which wavelengths of light they absorb.”

QBI researcher Dr Fanny de Busserolles, who shares lead authorship on the study with Dr Sara Stieb, said the team was able to discover a unique specialisation in the eye of the fish that may allow them to better detect friends and their anemone.

“In the part of the anemonefish’s eye that looks forward, the photoreceptors detect a combination of violet light and ultraviolet light,” Dr de Busserolles said.

“They seem to be very good at distinguishing colour, and very good at seeing UV – it looks like they use it a lot.”

Dr Sara Stieb said the special ability made sense, based on the fish’s environment and food source.

“Anemonefish live very close to the surface, where UV light can easily penetrate,” Dr Stieb said.

“They live in symbiosis with anemones, and the anemones use UV to grow.

“Moreover, anemonefish feed on zooplankton which absorb UV light, so it would appear like dark dots against the background, making it easy to find.”

Dr Cortesi said UV vision lent anemonefish another important advantage.

“Their visual system seems to be very tuned to recognising who is their friend and who is not,” he said.

“The white stripes on anemonefish reflect UV, which means they should be easier for other anemonefish to recognise.

“By contrast, a lot of the bigger fish – including ones that eat anemonefish – cannot see UV, so if you want to communicate on the reef over short distances, then UV is a very good way to do this.

“UV is essentially a secret channel that only these little fish can use to talk to each other,” he said.

“They can be as flashy as they want and they won’t be seen – and it might be how Nemo’s cousin finds its friends.”

The findings have been published in the journal Scientific Reports.

Related articles

a scuba diver taking a photo of bleached coral underwater
Feature

Thousands of Queensland reef photos lead to worldwide change

UQ is celebrating the longest and most comprehensive reef photography monitoring project in the world.
15 July 2025
A man in graduation cap and gown poses with his family.

From war-torn Liberia to the UQ Law School: a graduate’s inspiring family legacy

When Alfred Brownell graduates from the UQ Law School this week, he fulfills a long-standing family legacy that began in West Africa more than 100 years ago.
15 July 2025

Media contact

Subscribe to UQ News

Get the latest from our newsroom.